Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Root isoprene formation alters lateral root development.

Identifieur interne : 000141 ( Main/Exploration ); précédent : 000140; suivant : 000142

Root isoprene formation alters lateral root development.

Auteurs : Maja Miloradovic Van Doorn [Allemagne] ; Juliane Merl-Pham [Allemagne] ; Andrea Ghirardo [Allemagne] ; Siegfried Fink [Allemagne] ; Andrea Polle [République populaire de Chine, Allemagne] ; Jörg-Peter Schnitzler [Allemagne] ; Maaria Rosenkranz [Allemagne]

Source :

RBID : pubmed:32495947

Abstract

Isoprene is a C5 volatile organic compound, which can protect aboveground plant tissue from abiotic stress such as short-term high temperatures and accumulation of reactive oxygen species (ROS). Here, we uncover new roles for isoprene in the plant belowground tissues. By analysing Populus x canescens isoprene synthase (PcISPS) promoter reporter plants, we discovered PcISPS promoter activity in certain regions of the roots including the vascular tissue, the differentiation zone and the root cap. Treatment of roots with auxin or salt increased PcISPS promoter activity at these sites, especially in the developing lateral roots (LR). Transgenic, isoprene non-emitting poplar roots revealed an accumulation of O2- in the same root regions where PcISPS promoter activity was localized. Absence of isoprene emission, moreover, increased the formation of LRs. Inhibition of NAD(P)H oxidase activity suppressed LR development, suggesting the involvement of ROS in this process. The analysis of the fine root proteome revealed a constitutive shift in the amount of several redox balance, signalling and development related proteins, such as superoxide dismutase, various peroxidases and linoleate 9S-lipoxygenase, in isoprene non-emitting poplar roots. Together our results indicate for isoprene a ROS-related function, eventually co-regulating the plant-internal signalling network and development processes in root tissue.

DOI: 10.1111/pce.13814
PubMed: 32495947


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Root isoprene formation alters lateral root development.</title>
<author>
<name sortKey="Miloradovic Van Doorn, Maja" sort="Miloradovic Van Doorn, Maja" uniqKey="Miloradovic Van Doorn M" first="Maja" last="Miloradovic Van Doorn">Maja Miloradovic Van Doorn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg</wicri:regionArea>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Merl Pham, Juliane" sort="Merl Pham, Juliane" uniqKey="Merl Pham J" first="Juliane" last="Merl-Pham">Juliane Merl-Pham</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg</wicri:regionArea>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghirardo, Andrea" sort="Ghirardo, Andrea" uniqKey="Ghirardo A" first="Andrea" last="Ghirardo">Andrea Ghirardo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg</wicri:regionArea>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fink, Siegfried" sort="Fink, Siegfried" uniqKey="Fink S" first="Siegfried" last="Fink">Siegfried Fink</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Botany, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forest Botany, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau</wicri:regionArea>
<wicri:noRegion>Freiburg im Breisgau</wicri:noRegion>
<wicri:noRegion>Freiburg im Breisgau</wicri:noRegion>
<wicri:noRegion>Freiburg im Breisgau</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forest Botany and Tree Physiology, University of Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg</wicri:regionArea>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rosenkranz, Maaria" sort="Rosenkranz, Maaria" uniqKey="Rosenkranz M" first="Maaria" last="Rosenkranz">Maaria Rosenkranz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg</wicri:regionArea>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32495947</idno>
<idno type="pmid">32495947</idno>
<idno type="doi">10.1111/pce.13814</idno>
<idno type="wicri:Area/Main/Corpus">000268</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000268</idno>
<idno type="wicri:Area/Main/Curation">000268</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000268</idno>
<idno type="wicri:Area/Main/Exploration">000268</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Root isoprene formation alters lateral root development.</title>
<author>
<name sortKey="Miloradovic Van Doorn, Maja" sort="Miloradovic Van Doorn, Maja" uniqKey="Miloradovic Van Doorn M" first="Maja" last="Miloradovic Van Doorn">Maja Miloradovic Van Doorn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg</wicri:regionArea>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Merl Pham, Juliane" sort="Merl Pham, Juliane" uniqKey="Merl Pham J" first="Juliane" last="Merl-Pham">Juliane Merl-Pham</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg</wicri:regionArea>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghirardo, Andrea" sort="Ghirardo, Andrea" uniqKey="Ghirardo A" first="Andrea" last="Ghirardo">Andrea Ghirardo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg</wicri:regionArea>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fink, Siegfried" sort="Fink, Siegfried" uniqKey="Fink S" first="Siegfried" last="Fink">Siegfried Fink</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Botany, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forest Botany, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau</wicri:regionArea>
<wicri:noRegion>Freiburg im Breisgau</wicri:noRegion>
<wicri:noRegion>Freiburg im Breisgau</wicri:noRegion>
<wicri:noRegion>Freiburg im Breisgau</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forest Botany and Tree Physiology, University of Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg</wicri:regionArea>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rosenkranz, Maaria" sort="Rosenkranz, Maaria" uniqKey="Rosenkranz M" first="Maaria" last="Rosenkranz">Maaria Rosenkranz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg</wicri:regionArea>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
<wicri:noRegion>Neuherberg</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Isoprene is a C5 volatile organic compound, which can protect aboveground plant tissue from abiotic stress such as short-term high temperatures and accumulation of reactive oxygen species (ROS). Here, we uncover new roles for isoprene in the plant belowground tissues. By analysing Populus x canescens isoprene synthase (PcISPS) promoter reporter plants, we discovered PcISPS promoter activity in certain regions of the roots including the vascular tissue, the differentiation zone and the root cap. Treatment of roots with auxin or salt increased PcISPS promoter activity at these sites, especially in the developing lateral roots (LR). Transgenic, isoprene non-emitting poplar roots revealed an accumulation of O
<sub>2</sub>
<sup>-</sup>
in the same root regions where PcISPS promoter activity was localized. Absence of isoprene emission, moreover, increased the formation of LRs. Inhibition of NAD(P)H oxidase activity suppressed LR development, suggesting the involvement of ROS in this process. The analysis of the fine root proteome revealed a constitutive shift in the amount of several redox balance, signalling and development related proteins, such as superoxide dismutase, various peroxidases and linoleate 9S-lipoxygenase, in isoprene non-emitting poplar roots. Together our results indicate for isoprene a ROS-related function, eventually co-regulating the plant-internal signalling network and development processes in root tissue.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32495947</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Root isoprene formation alters lateral root development.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.13814</ELocationID>
<Abstract>
<AbstractText>Isoprene is a C5 volatile organic compound, which can protect aboveground plant tissue from abiotic stress such as short-term high temperatures and accumulation of reactive oxygen species (ROS). Here, we uncover new roles for isoprene in the plant belowground tissues. By analysing Populus x canescens isoprene synthase (PcISPS) promoter reporter plants, we discovered PcISPS promoter activity in certain regions of the roots including the vascular tissue, the differentiation zone and the root cap. Treatment of roots with auxin or salt increased PcISPS promoter activity at these sites, especially in the developing lateral roots (LR). Transgenic, isoprene non-emitting poplar roots revealed an accumulation of O
<sub>2</sub>
<sup>-</sup>
in the same root regions where PcISPS promoter activity was localized. Absence of isoprene emission, moreover, increased the formation of LRs. Inhibition of NAD(P)H oxidase activity suppressed LR development, suggesting the involvement of ROS in this process. The analysis of the fine root proteome revealed a constitutive shift in the amount of several redox balance, signalling and development related proteins, such as superoxide dismutase, various peroxidases and linoleate 9S-lipoxygenase, in isoprene non-emitting poplar roots. Together our results indicate for isoprene a ROS-related function, eventually co-regulating the plant-internal signalling network and development processes in root tissue.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Miloradovic van Doorn</LastName>
<ForeName>Maja</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Merl-Pham</LastName>
<ForeName>Juliane</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghirardo</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-1973-4007</Identifier>
<AffiliationInfo>
<Affiliation>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fink</LastName>
<ForeName>Siegfried</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Forest Botany, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Polle</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-8697-6394</Identifier>
<AffiliationInfo>
<Affiliation>Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schnitzler</LastName>
<ForeName>Jörg-Peter</ForeName>
<Initials>JP</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9825-867X</Identifier>
<AffiliationInfo>
<Affiliation>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rosenkranz</LastName>
<ForeName>Maaria</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-1421-112X</Identifier>
<AffiliationInfo>
<Affiliation>Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>SCHN653/5-2</GrantID>
<Agency>Deutsche Forschungsgemeinschaft</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>PO362/20-2</GrantID>
<Agency>Deutsche Forschungsgemeinschaft</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus x canescens</Keyword>
<Keyword MajorTopicYN="N">ROS</Keyword>
<Keyword MajorTopicYN="N">VOC</Keyword>
<Keyword MajorTopicYN="N">isoprene</Keyword>
<Keyword MajorTopicYN="N">isoprene promoter</Keyword>
<Keyword MajorTopicYN="N">lateral roots</Keyword>
<Keyword MajorTopicYN="N">poplar</Keyword>
<Keyword MajorTopicYN="N">reactive oxygen species</Keyword>
<Keyword MajorTopicYN="N">roots</Keyword>
<Keyword MajorTopicYN="N">volatile organic compounds</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32495947</ArticleId>
<ArticleId IdType="doi">10.1111/pce.13814</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Affek, H. P., & Yakir, D. (2002). Protection by isoprene against singlet oxygen in leaves. Plant Physiology, 129, 269-277.</Citation>
</Reference>
<Reference>
<Citation>Babtista, P., Martins, A., Pais, M. S., Tavares, R. M., & Lino-Neto, T. (2007). Involvement of reactive oxygen species during early stages of ectomycorrhizal establishment between Castanea sativa and Pisolithus tinctorius. Mycorrhiza, 17, 185-193.</Citation>
</Reference>
<Reference>
<Citation>Behnke, K., Ehlting, B., Teuber, M., Bauerfeind, M., Louis, S., Hänsch, R., … Schnitzler, J. P. (2007). Transgenic, non-isoprene-emitting poplars don't like it hot. Plant Journal, 51, 485-499.</Citation>
</Reference>
<Reference>
<Citation>Behnke, K., Grote, R., Brüggemann, N., Zimmer, I., Zhou, G., Elobeid, M., … Schnitzler, J. P. (2012). Isoprene emission-free poplars-A chance to reduce the impact from poplar plantations on the atmosphere. New Phytologist, 194, 70-82.</Citation>
</Reference>
<Reference>
<Citation>Behnke, K., Kaiser, A., Zimmer, I., Brüggemann, N., Janz, D., Polle, A., … Schnitzler, J. P. (2010). RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities: A transcriptomic and metabolomic analysis. Plant Molecular Biology, 74, 61-75.</Citation>
</Reference>
<Reference>
<Citation>Behnke, K., Kleist, E., Uerlings, R., Wildt, J., Rennenberg, H., & Schnitzler, J. P. (2009). RNAi-mediated suppression of isoprene biosynthesis in hybrid poplars impacts ozone tolerance. Tree Physiology, 29, 725-736.</Citation>
</Reference>
<Reference>
<Citation>Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Biochemistry, 72, 248-254.</Citation>
</Reference>
<Reference>
<Citation>Carol, R. J., & Dolan, L. (2006). The role of reactive oxygen species in cell growth: Lessons from root hairs. Journal of Experimental Botany, 57, 1829-1834.</Citation>
</Reference>
<Reference>
<Citation>Chen, F., Ro, D. K., Petri, J., Gershenzon, J., Böhlmann, J., Pichersky, E., & Tholl, D. (2004). Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiology, 135, 1956-1966.</Citation>
</Reference>
<Reference>
<Citation>Chen, F., Tholl, D., D'Auria, J. C., Farooq, A., Pichersky, E., & Gershenzon, J. (2003). Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell, 15, 481-494.</Citation>
</Reference>
<Reference>
<Citation>Cinege, G., Louis, S., Hänsch, R., & Schnitzler, J. P. (2009). Regulation of isoprene synthase promoter by environmental and internal factors. Plant Molecular Biology, 69, 593-604.</Citation>
</Reference>
<Reference>
<Citation>Cross, A. R., & Jones, O. T. G. (1986). The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils-Specific labeling of a component polypeptide of the oxidase. Biochemical Journal, 237, 111-116.</Citation>
</Reference>
<Reference>
<Citation>Deak, K. I., & Malamy, J. (2005). Osmotic regulation of root system architecture. The Plant Journal, 43, 17-28.</Citation>
</Reference>
<Reference>
<Citation>Ditengou, F. A., Müller, A., Rosenkranz, M., Felten, J., Lasok, H., Miloradovic van Doorn, M., … Polle, A. (2015). Volatile signaling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Communications, 6, 6279.</Citation>
</Reference>
<Reference>
<Citation>Dunand, C., Crèvecoeur, M., & Penel, C. (2007). Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: Possible interaction with peroxidases. New Phytologist, 174, 332-341.</Citation>
</Reference>
<Reference>
<Citation>Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikström, C., & Wold, S. (2006). Multi- and megavariate data analysis. Part I. Basic principles and applications. Umea, Sweden: Umetrics Academy.</Citation>
</Reference>
<Reference>
<Citation>Gapper, C., & Dolan, L. (2006). Control of plant development by reactive oxygen species. Plant Physiology, 141, 341-345.</Citation>
</Reference>
<Reference>
<Citation>Ghirardo, A., Gutknecht, J., Zimmer, I., Brüggemann, N., & Schnitzler, J. P. (2011). Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: Online tracing of C translocation dynamics in poplar plants. PLoS One, 6, 2-5.</Citation>
</Reference>
<Reference>
<Citation>Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., … Rokhsar, D. S. (2012). Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research, 40, 1178-1186.</Citation>
</Reference>
<Reference>
<Citation>Grosche, A., Hauser, A., Lepper, M. F., Mayo, R., von Toerne, C., Merl-Pham, J., & Hauck, S. M. (2015). The proteome of native adult Muller glial cells from murine retina. Molecular & Cellular Proteomics, 15, 462-480.</Citation>
</Reference>
<Reference>
<Citation>Hancock, J. T. (2016). Oxidative stress and redox signalling in plants. In eLS. Chichester, England: John Wiley & Sons, Ltd.</Citation>
</Reference>
<Reference>
<Citation>Hauck, S. M., Dietter, J., Kramer, R. L., Hofmaier, F., Zipplies, J. K., Amann, B., … Ueffing, M. (2010). Deciphering membrane-associated molecular processes in target tissue of autoimmune uveitis by label-free quantitative mass spectrometry. Molecular & Cellular Proteomics, 9, 2292-2305.</Citation>
</Reference>
<Reference>
<Citation>Heil, M. (2009). Plant communication. In Encyclopedia of life sciences (ELS). Chichester, England: John Wiley & Sons, Ltd.</Citation>
</Reference>
<Reference>
<Citation>Herde, M., Gartner, K., Kollner, T. G., Fode, B., Boland, W., Gershenzon, J., … Tholl, D. (2008). Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C(16)-homoterpene TMTT. Plant Cell, 20, 1152-1168.</Citation>
</Reference>
<Reference>
<Citation>Higo, K., Ugawa, Y., Iwamoto, M., & Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Research, 27, 297-300.</Citation>
</Reference>
<Reference>
<Citation>Huang, A. X., She, X. P., Cao, B. H., & Ren, Y. (2011). Distribution of hydrogenperoxide during adventitious roots initiation and development in mung beanhypocotyls cuttings. Plant Growth Regulation, 64, 109-118.</Citation>
</Reference>
<Reference>
<Citation>Jamet, A., Mandon, K., & Hérouart, D. (2007). H2O2 is required for optimal establishment of the Medicago sativa/Sinorhizobium meliloti symbiosis. Journal of Bacteriology, 189, 8741-8745.</Citation>
</Reference>
<Reference>
<Citation>Kumar, D., Yusuf, M. A., Singh, P., Sardar, M., & Sarin, N. B. (2014). Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-Protocol, 4, e1108.</Citation>
</Reference>
<Reference>
<Citation>Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-1874.</Citation>
</Reference>
<Reference>
<Citation>Landini, L., Positano, V., & Santarelli, M. (2005). Advanced image processing in magnetic resonance imaging (1st ed). Boca Raton, FL: CRC Press, Taylor & Francis Group.</Citation>
</Reference>
<Reference>
<Citation>Lavenus, J., Goh, T., Roberts, I., Guyomarc'h, S., Lucas, M., De Smet, I., … Laplaze, L. (2013). Lateral root development in Arabidopsis: Fifty shades of auxin. Trends in Plant Science, 18, 450-458.</Citation>
</Reference>
<Reference>
<Citation>Leplé, J. C., Brasileiro, A. C. M., Michel, M. F., Delmotte, F., & Jouanin, L. (1992). Transgenic poplars: Expression of chimeric genes using four different constructs. Plant Cell Reports, 11, 137-141.</Citation>
</Reference>
<Reference>
<Citation>Lescot, M., Déhais, P., Moreau, Y., De Moor, B., Rouzé, P., & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30, 325-327.</Citation>
</Reference>
<Reference>
<Citation>Li, L., Hey, S., Liu, S., Liu, Q., McNinch, C., Hu, H. C., … Hochholdinger, F. (2016). Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth. Scientific Reports, 6, 34395.</Citation>
</Reference>
<Reference>
<Citation>Li, N., Sun, L., Zhang, L., Song, Y., Hu, P., Li, C., & Hao, F. S. (2015). AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis. Planta, 241, 591-602.</Citation>
</Reference>
<Reference>
<Citation>Loivamäki, M., Gilmer, F., Fischbach, R. J., Sörgel, C., Bachl, A., Walter, A., & Schnitzler, J. P. (2007). Arabidopsis, a model to study biological functions of isoprene emission? Plant Physiology, 144, 1-13.</Citation>
</Reference>
<Reference>
<Citation>Loreto, F., Mannozzi, M., Maris, C., Nascetti, P., Ferranti, F., & Pasqualini, S. (2001). Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiology, 126, 993-1000.</Citation>
</Reference>
<Reference>
<Citation>Loreto, F., & Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, 127, 1781-1787.</Citation>
</Reference>
<Reference>
<Citation>Maffei, M. E., Gertsch, J., & Appendino, G. (2011). Plant volatiles: Production, function and pharmacology. Natural Product Reports, 28, 1359-1380.</Citation>
</Reference>
<Reference>
<Citation>Manzano, C., Pallero-Baena, M., Casimiro, I., De Rybel, B., Orman-Ligeza, B., Van Isterdael, G., … del Pozo, J. C. (2014). The emerging role of reactive oxygen species signaling during lateral root development. Plant Physiology, 165, 1105-1119.</Citation>
</Reference>
<Reference>
<Citation>Melan, M. A., Dong, X., Endara, M. E., Davis, K. R., Ausubel, F. M., & Peterman, T. K. (1993). An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiology, 101, 441-450.</Citation>
</Reference>
<Reference>
<Citation>Merl, J., Ueffing, M., Hauck, S. M., & von Toerne, C. (2012). Direct comparison of MS-based label-free and SILAC quantitative proteome profiling strategies in primary retinal Müller cells. Proteomics, 12, 1902-1911.</Citation>
</Reference>
<Reference>
<Citation>Mittler, R. (2017). ROS are good. Trends in Plant Science, 22, 11-19.</Citation>
</Reference>
<Reference>
<Citation>Møller, I. S., & Tester, M. (2007). Salinity tolerance of Arabidopsis: A good model for cereals? Trends in Plant Science, 12(12), 534-540.</Citation>
</Reference>
<Reference>
<Citation>Monson, R. K., Winkler, J. B., Rosenstiel, T. N., Block, K., Merl-Pham, J., Strauss, S. H., … Schnitzler, J. P. (2020). High productivity in hybrid-poplar plantations without isoprene emission to the atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 117, 1596-1605.</Citation>
</Reference>
<Reference>
<Citation>Moritz, F., Kaling, M., Schnitzler, J. P., & Schmitt-Kopplin, P. (2017). Characterization of poplar metabotypes via mass difference enrichment analysis. Plant, Cell & Environment, 40, 1057-1073.</Citation>
</Reference>
<Reference>
<Citation>Müller, A., Kaling, M., Faubert, P., Gort, G., Smid, H. M., Van Loon, J. J. A., … Rosenkranz, M. (2015). Isoprene emission in poplar is not important for the feeding behaviour of poplar leaf beetles. BMC Plant Biology, 15, 165.</Citation>
</Reference>
<Reference>
<Citation>Müller, K., Linkies, A., Leubner-Metzger, G., & Kermode, A. R. (2012). Role of a respiratory burst oxidase of Lepidium sativum (cress) seedlings in root development and auxin signalling. Journal of Experimental Botany, 63, 6325-6334.</Citation>
</Reference>
<Reference>
<Citation>Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.</Citation>
</Reference>
<Reference>
<Citation>Nanda, A. K., Andrio, E., Marino, D., Pauly, N., & Dunand, C. (2010). Reactive oxygen species during plant-microorganism early interactions. Journal of Integrative Plant Biology, 52, 195-204.</Citation>
</Reference>
<Reference>
<Citation>Ociepa P. (2017). Investigating the role of pectin methylesterases in regulating root development in Arabidopsis thaliana (doctoral dissertation). University of Southampton.</Citation>
</Reference>
<Reference>
<Citation>Passardi, F., Tognolli, M., De Meyer, M., Penel, C., & Dunand, C. (2006). Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta, 223, 965-974.</Citation>
</Reference>
<Reference>
<Citation>Peñuelas, J., Asensio, D., Tholl, D., Wenke, K., Rosenkranz, M., Piechulla, B., & Schnitzler, J. P. (2014). Biogenic volatile emissions from the soil. Plant, Cell & Environment, 37, 1866-1891.</Citation>
</Reference>
<Reference>
<Citation>Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu Deepti, J., … Vizcaíno Juan, A. (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Research, 47, D442-D450. http://dx.doi.org/10.1093/nar/gky1106.</Citation>
</Reference>
<Reference>
<Citation>Riedlmeier, M., Ghirardo, A., Wenig, M., Knappe, C., Koch, K., Georgii, E., … Vlot, A. C. (2017). Monoterpenes support systemic acquired resistance within and between plants. Plant Cell, 29, 1440-1459.</Citation>
</Reference>
<Reference>
<Citation>Ro, D. K., Ehlting, J., Keeling, C. I., Lin, R., Mattheus, N., & Bohlmann, J. (2006). Microarray expression profiling and functional characterization of AtTPS genes: Duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-gamma-bisabolene synthases. Archieves of Biochemistry and Biophysics, 448, 104-116.</Citation>
</Reference>
<Reference>
<Citation>Ruifrok, A. C., & Johnston, D. A. (2001). Quantification of histochemical staining by color deconvolution. Analytical and Quantitative Cytology and Histology, 23, 291-299.</Citation>
</Reference>
<Reference>
<Citation>Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.</Citation>
</Reference>
<Reference>
<Citation>Sampedro, J., & Cosgrove, D. J. (2005). The expansin superfamily. Genome Biology, 6, 242.</Citation>
</Reference>
<Reference>
<Citation>Sasaki, K., Saito, T., Lämsä, M., Oksman-Caldentey, K. M., Suzuki, M., Ohyama, K., … Yazaki, K. (2007). Plants utilize isoprene emission as a thermotolerance mechanism. Plant and Cell Physiology, 48, 1254-1262.</Citation>
</Reference>
<Reference>
<Citation>Sharkey, T. D., & Monson, R. K. (2017). Isoprene research-60 years later, the biology is still enigmatic. Plant, Cell & Environment, 40, 1671-1678.</Citation>
</Reference>
<Reference>
<Citation>Sharkey, T. D., & Singsaas, E. L. (1995). Why plants emit isoprene. Nature, 374, 769.</Citation>
</Reference>
<Reference>
<Citation>Simpraga, M., Takabayashi, J., & Holopainen, J. K. (2016). Language of plants: Where is the word? Journal of Integrative Plant Biology, 58, 343-349.</Citation>
</Reference>
<Reference>
<Citation>Singh, R., Singh, S., Parihar, P., Mishra, R. K., Tripathi, D. K., Singh, V. P., … Prasad, S. M. (2016). Reactive oxygen species (ROS): Beneficial companions of plants' developmental processes. Frontiers in Plant Science, 7, 1299.</Citation>
</Reference>
<Reference>
<Citation>Sohrabi, R., Huh, J. H., Badieyan, S., Rakotondraibe, L. H., Kliebenstein, D. J., Sobrado, P., & Tholl, D. (2015). In planta variation of volatile biosynthesis: An alternative biosynthetic route to the formation of the pathogen-induced volatile homoterpene DMNT via triterpene degradation in Arabidopsis roots. Plant Cell, 27, 874-890.</Citation>
</Reference>
<Reference>
<Citation>Sumiyoshi, M., Nakamura, A., Nakamura, H., Hakata, M., Ichikawa, H., Hirochika, H., … Iwai, H. (2013). Increase in cellulose accumulation and improvement of saccharification by overexpression of arabinofuranosidase in rice. PLoS One, 8, e78269.</Citation>
</Reference>
<Reference>
<Citation>Sundell, D., Mannapperuma, C., Netotea, S., Delhomme, N., Lin, Y. C., Sjödin, A., … Hvidsten, T. R. (2015). The plant genome integrative explorer resource: PlantGenIE.Org. New Phytologist, 8, 1149-1156.</Citation>
</Reference>
<Reference>
<Citation>Swanson, S., & Gilroy, S. (2010). ROS in plant development. Physiologia Plantarum, 138, 384-392.</Citation>
</Reference>
<Reference>
<Citation>Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101, 11030-11035.</Citation>
</Reference>
<Reference>
<Citation>Terry, G. M., Stokes, N. J., Hewitt, C. N., & Mansfield, T. A. (1995). Exposure to isoprene promotes flowering in plants. Journal of Experimental Botany, 46, 1629-1631.</Citation>
</Reference>
<Reference>
<Citation>Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., … Stitt, M. (2004). Mapman: A user driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal, 37, 914-939.</Citation>
</Reference>
<Reference>
<Citation>Tsukagoshi, H. (2016). Control of root growth and development by reactive oxygen species. Current Opinion of Plant Biology, 29, 57-63.</Citation>
</Reference>
<Reference>
<Citation>Usadel, B., Poree, F., Nagel, A., Lohse, M., Czedik-Eysenberg, A., & Stitt, M. (2009). A guide to using MapMan to visualize and compare omics data in plants: A case study in the crop species, maize. Plant, Cell & Environment, 32, 1211-1229.</Citation>
</Reference>
<Reference>
<Citation>van der Weele, C. M., Spollen, W. G., Sharp, R. E., & Baskin, T. I. (2000). Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. Journal of Experimental Botany, 51, 1555-1562.</Citation>
</Reference>
<Reference>
<Citation>Vanzo, E., Merl-Pham, J., Velikova, V., Ghirardo, A., Lindermayr, C., Hauck, S. M., … Schnitzler, J. P. (2016). Modulation of protein S-nitrosylation by isoprene emission in poplar. Plant Physiology, 170, 1945-1961.</Citation>
</Reference>
<Reference>
<Citation>Vanzo, E. M., Jud, W., Li, Z., Albert, A., Domagalska, M. A., Ghirardo, A., … Schnitzler, J. P. (2015). Facing the future-Effects of short-term climate extremes on isoprene-emitting and non-emitting poplar. Plant Physiology, 169, 560-575.</Citation>
</Reference>
<Reference>
<Citation>Vaughan, M. M., Wang, Q., Webster, F. X., Kiemle, D., Hong, Y. J., Tantillo, D. J., … Tholl, D. (2013). Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory. Plant Cell, 25, 1108-1125.</Citation>
</Reference>
<Reference>
<Citation>Velikova, V., Ghirardo, A., Vanzo, E., Merl, J., Hauck, S. M., & Schnitzler, J. P. (2014). The genetic manipulation of isoprene emissions in poplar plants remodels the chloroplast proteome. Journal of Proteome Research, 13, 2005-2018.</Citation>
</Reference>
<Reference>
<Citation>Velikova, V., Pinelli, P., & Loreto, F. (2005). Consequences of inhibition of isoprene synthesis in Phragmites australis leaves exposed to elevated temperatures. Agriculture, Ecosystems & Environment, 106, 209-217.</Citation>
</Reference>
<Reference>
<Citation>Vellosillo, T., Martínez, M., López, M. A., Vicente, J., Cascón, T., Dolan, L., … Castresana, C. (2007). Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell, 19, 831-846.</Citation>
</Reference>
<Reference>
<Citation>Vickers, C. E., Possell, M., Cojocariu, C. I., Laothawornkitkul, J., Ryan, A., Mullineaux, P. M., & Hewitt, C. N. (2009). Isoprene synthesis protects tobacco plants from oxidative stress. Plant, Cell & Environment, 32, 520-531.</Citation>
</Reference>
<Reference>
<Citation>Way, D. A., Ghirardo, A., Kanawati, B., Esperschütz, J., Monson, R. K., Jackson, R. B., … Schnitzler, J. P. (2013). Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene and non-isoprene-emitting poplars. New Phytologist, 200, 534-546.</Citation>
</Reference>
<Reference>
<Citation>Wenig, M., Ghirardo, A., Sales, J. H., Pabst, E. S., Breitenbach, H. H., Weber, B., … Vlot, A. C. (2019). Systemic acquired resistance networks boost air-borne innate immune signals. Nature Communications, 10, 3183.</Citation>
</Reference>
<Reference>
<Citation>Werner, S., Polle, A., & Birkmann, N. (2016). Belowground communication: Impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. The Applied Microbiology and Biotechnology, 100, 8651-8665.</Citation>
</Reference>
<Reference>
<Citation>Wiśniewski, J. R., Zougman, A., Nagaraj, N., & Mann, M. (2009). Universal sample preparation method for proteome analysis. Nature Methods, 6, 359-362.</Citation>
</Reference>
<Reference>
<Citation>Zolla, G., Heimer, Y. M., & Barak, S. (2010). Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. Journal of Experimental Botany, 61, 211-224.</Citation>
</Reference>
<Reference>
<Citation>Zuo, Z., Weraduwage, S. M., Lantz, A. T., Sanchez, L. M., Weise, S. E., Wang, J., … Sharkey, T. D. (2019). Isoprene acts as a signaling molecule in gene networks important for stress responses and plant growth. Plant Physiology, 180, 124-152.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>République populaire de Chine</li>
</country>
<region>
<li>Basse-Saxe</li>
</region>
<settlement>
<li>Göttingen</li>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Miloradovic Van Doorn, Maja" sort="Miloradovic Van Doorn, Maja" uniqKey="Miloradovic Van Doorn M" first="Maja" last="Miloradovic Van Doorn">Maja Miloradovic Van Doorn</name>
</noRegion>
<name sortKey="Fink, Siegfried" sort="Fink, Siegfried" uniqKey="Fink S" first="Siegfried" last="Fink">Siegfried Fink</name>
<name sortKey="Ghirardo, Andrea" sort="Ghirardo, Andrea" uniqKey="Ghirardo A" first="Andrea" last="Ghirardo">Andrea Ghirardo</name>
<name sortKey="Merl Pham, Juliane" sort="Merl Pham, Juliane" uniqKey="Merl Pham J" first="Juliane" last="Merl-Pham">Juliane Merl-Pham</name>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<name sortKey="Rosenkranz, Maaria" sort="Rosenkranz, Maaria" uniqKey="Rosenkranz M" first="Maaria" last="Rosenkranz">Maaria Rosenkranz</name>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000141 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000141 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32495947
   |texte=   Root isoprene formation alters lateral root development.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32495947" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020